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Reactive oxygen species induce cellular damage
and have been implicated as mediators for cellular
signaling pathways. However, a linkage between
the cellular redox status and cell cycle progression
has not been demonstrated. We previously dem-
onstrated, using the Chinese hamster ovary cell
line AS52, that the cytotoxic and mutagenic effects
of oxidative stress is prevented by ascorbic acid
(AA), but only when cells are treated with AA prior
to treatment with the stressor. To elucidate the
mechanism(s) responsible for this effect, we deter-
mined the effect of AA on cell cycle progression
during oxidative stress. Flow cytometric analyses
demonstrated that treatment of AS52 cells with AA
(50 mM), prior to treatment with a radical gener-
ating system (RGS), enhanced cell cycle arrest at
the G2/M DNA damage checkpoint when com-

pared to cells treated with RGS. AA had no effect
on cell cycle progression in the absence of oxida-
tive stress. Furthermore, under conditions that pre-
vent the reduction of dehydroascorbate (DHA), the
oxidized form of AA, cell cycle arrest was also
induced at the G2/M DNA damage checkpoint.
These observations demonstrate that during peri-
ods of oxidative stress, AA functions as an antiox-
idant and DHA enhances transient arrest at the
G2/M checkpoint by delaying the activation of
cyclin B-cdc2. These results suggest the presence of
a unique redox mechanism for the regulation of cell
cycle progression and also demonstrate a novel
mechanism by which AA protects cells from dam-
age due to oxidative stress. Environ. Mol. Muta-
gen. 33:144–152, 1999 © 1999 Wiley-Liss, Inc.
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INTRODUCTION

Ascorbic acid (AA) is the major water soluble antioxidant
present in cells and plasma [Frei et al., 1988, 1989]. Nu-
merous in vitro and in vitro studies have demonstrated the
antimutagenic [Frei et al., 1988, 1989; Fraga et al., 1991;
Krinsky, 1993; Sweetman et al., 1997] and anticlastogenic
effects of AA [Shamberger, 1984; Krishna et al., 1986].
Conversely, other studies have demonstrated that under
certain conditions AA functions as a prooxidant and in-
creases DNA damage [Stich et al., 1976, 1979; Galloway
and Painter, 1979; Rosin et al., 1980; Speit et al., 1980].
Interpretation of data from such studies have been based on
the free-radical scavenging and autooxidizing properties of
AA [reviewed in Niki, 1991]. AA has other regulatory roles
in several biological processes, including transcription and
translation [Lyons and Schwarz, 1984; Leboy et al., 1989;
Huang et al., 1993; Sullivan et al., 1994] and it has been
suggested that dehydroascorbate (DHA), the oxidized form
of AA, may have a role in regulating cell cycle progression
[Edgar, 1970]. However, the role of AA and/or DHA in
these processes has not been elucidated.

Progression through the cell cycle is regulated by com-
plex protein–protein interactions between cyclins and cy-
clin-dependent protein kinases (cdks) [Morgan, 1995; Still-
man, 1996; Elledge, 1996]. These cyclin-cdk complexes are
positively and negatively regulated by phosphorylation and
by the binding of cyclin kinase inhibitors (ckI) to the com-
plex. Following DNA damage, cells can be transiently ar-
rested at the G1/S, S, or G2/M DNA damage checkpoints,
and the DNA is either repaired or the cell undergoes apop-
tosis. While it is well established that p53 has a pivotal role
in inducing cell cycle arrest at the G1/S DNA damage
checkpoint, recent studies suggest that transient arrest at the
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G2/M DNA damage checkpoint is a p53 independent pro-
cess that involves the inactivation/sequestering of cdc25C
[Furnari et al., 1997; Sanchez et al., 1997; Peng et al., 1997;
Poon et al., 1997]. This prevents the dephosphorylation and
activation of the mitosis-promoting factor, cyclin B-cdc2,
which causes cells to arrest at the G2/M DNA damage
checkpoint. The reactive oxygen intermediate hydrogen
peroxide (H2O2) induces a variety of responses in cells,
including cell death, cellular senescence [Chen and Ames,
1994; Chen et al., 1995] and transient cell cycle arrest at
either the G1/S or G2/M DNA damage checkpoint [Gelvan
et al., 1995; Clopton and Saltman, 1995; Wiese et al., 1995;
Wharton, 1995]. While arrest at the G1/S DNA damage
checkpoint probably involves p53, the mechanism by which
H2O2 induces arrest at the G2/M DNA damage checkpoint
is unknown.

We previously demonstrated, using the Chinese hamster
ovary cell line AS52 as a model system, that a physiologi-
cally relevant concentration of AA (50mM) prevented the
enhanced cytotoxicity and mutagenicity observed in AS52
cells treated with an oxidative stressor, but only when cells
were treated with AA prior to treatment with the oxidative
stressor [Bijur et al., 1997]. The results of the present study
demonstrate that AA enhances transient cell cycle arrest at
the G2/M DNA damage checkpoint during oxidative stress.
Furthermore, under conditions that prevented the reduction
of DHA, the oxidized form of AA, cell cycle arrest was also
induced during oxidative stress. These observations demon-
strate that during periods of oxidative stress, AA functions
as an antioxidant and DHA enhances transient arrest at the
G2/M checkpoint by delaying the activation of cyclin B-
cdc2. These results suggest the presence of a unique redox
mechanism for the regulation of cell cycle progression and
also demonstrate a novel mechanism by which AA protects
cells from damage due to oxidative stress.

MATERIALS AND METHODS

Materials

AA, propidium iodide, RNase A, sodium citrate, polyethylene glycol
(PEG) 8000, buthionine sulfoximine (BSO), and Triton X-100 were pur-
chased from Sigma Chemical Co. (St. Louis, MO). DHA was purchased
from Aldrich Chemicals (Milwaukee, WI). Nitrocellulose, ECL horserad-
ish peroxidase substrate, and chemiluminescence film (Hyperfilm) were
purchased from Amersham Life Sciences (Arlington Heights, IL). Mouse
monoclonal antibodies against cdc2 (clone 17), cyclin B1 (clone GSN1),
goat anti-mouse horseradish peroxidase (HRP) conjugated IgG, and protein
A/G conjugated agarose beads were purchased from Santa Cruz Biotech-
nology (Santa Cruz, CA). Mouse monoclonal antibody against p53 (clone
PAb240), cyclin A (clone E23), and normal mouse IgG were purchased
from Oncogene Research Products (Cambridge, MA). Mouse monoclonal
antibody against phosphotyrosine (clone PY20) was purchased from Trans-
duction Laboratories (Lexington, KY). All chemicals and enzymes were of
the highest purity available.

Cell Culture and Treatments

AS52 cells were obtained from Dr. Kenneth Tindall (National Institute
of Environmental Health Sciences, Research Triangle Park, NC). AS52
cells were grown and maintained, as described previously, at 37°C in a
humidified 5% CO2 environment in Hams F-12 medium supplemented
with 5% (v/v) dialyzed fetal calf serum (FCS) and MPA additives (10
mg/ml mycophenolic acid, 25mg/ml adenine, 50mM thymidine, 250
mg/ml xanthine and 3mM aminopterin) [Ariza and Williams, 1996; Bijur
et al., 1997].

AS52 cells were treated as described previously [Bijur et al., 1997].
Briefly, cells (106) were cultured 24 hr prior to the addition of the radical
generating system (RGS, xanthine oxidase (0.01 unit/ml) and hypoxanthine
(6.8 mg/ml) dissolved in F-12 medium lacking FCS) in Hams F-12 medium
containing 5% FCS. Cells were washed with Hank’s Balanced Salt Solu-
tion (HBSS), and at the indicated times either AA (50mM) or DHA (50
mM) in F-12 medium containing 5% FCS was added. For studies with
BSO, cells (106) were cultured in F-12 medium containing 5% FCS 48 hr
prior to treatment with RGS and fresh medium containing BSO (0.01 M)
was added 24 hr prior to treatment with the RGS. BSO was maintained in
the medium during treatment with AA or DHA. Following AA or DHA
treatment, cells were washed three times with HBSS and treated with RGS
for 20 min at 37°C in 5% CO2. After treatment with RGS, the cells were
washed three times with HBSS, F-12 medium containing 5% FCS was
added, and the cells were incubated at 37°C for an additional 24 hr.

Cytotoxicity studies were performed as described previously [Bijur et
al., 1997]. Briefly, cells (600) were plated at a density of 200 cells per 60
mm dish in F-12 medium containing 5% FCS and incubated 7 days at
37°C. Cells were fixed with methanol : acetic acid : water (50:7:43) and
stained with a 1% solution of crystal violet. Only colonies containing 50
cells or more were counted. The cytotoxicity of the various treatments was
determined by comparing the cloning efficiency of cells in the treatment
group to the cloning efficiency of untreated controls. Absolute cloning
efficiency of AS52 cells ranged from 82–100%.

Cell Cycle Analysis

Twenty-four hours following treatment with RGS, cells (106) were
removed by trypsinization, washed three times with cold 4 mM sodium
citrate stained with propidium iodide (in a solution containing 4 mM
sodium citrate, 3% (w/v) PEG 8000, 100mg/ml propidium iodide, 180
units/ml RNase A and 0.01% (v/v) Triton X-100 for 20 min at 37°C,
followed by incubation in a solution containing 0.4 M NaCl, 3% PEG, 100
mg/ml propidium iodide and 0.01% Triton X-100 for 1 hr at 4°C). Fol-
lowing staining, cell cycle analysis was performed using a Coulter EPICS
XL flow cytometer. For analysis, the primary G1 peak of untreated cells
was set on channel 200 of a 1024 channel histogram and the settings were
not changed during the course of the analysis. Percentage of cells in G0/G1,
S, and G2/M were determined using Multicycle AV Version 3.0. Analysis
was on a minimum of 3.03 104 events. For a positive control, cells were
treated with nocodazole (4mg/ml) for 24 hr. Additional controls consisted
of untreated cells, cells treated with RGS for 20 min, and cells treated with
either AA or DHA (50mM) for 2 hr. A minimum of three analyses were
performed.

Western Analyses and Immunoprecipitations

Twenty-four hours following treatment with RGS, cells were washed
with cold 10 mM Tris-Cl, pH 7.0 containing 50mM phenylmethylsulfo-
nylfluoride, 3 units/ml aprotinin and 1 mM sodium orthovanadate (lysis
buffer), harvested, resuspended in lysis buffer, and lysed by sonication (20
1-sec treatments at 40% duty cycle setting 5 for microtip probe using a
Branson Model 350 sonicator). The homogenates were centrifuged at
14,000g for 5 min and the supernatants were stored at -70°C until use.
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Total protein in the supernatants was determined by Commassie blue
staining (BioRad Protein Determination Kit, Richmond, CA) with bovine
serum albumin as the standard. Proteins (20mg) from the supernatants
were separated on 10% SDS-PAGE and transferred by electroblotting to
nitrocellulose using a standard transfer buffer (25 mM Tris, 192 mM
glycine and 20% (v/v) methanol). Membranes were blocked with blotto (10
mM Tris-Cl pH 7.5 containing 0.05% (v/v) Tween-20 and 5% (w/v) nonfat
dry milk) for 1 hr and immunoprobed using mouse monoclonal antibodies
against p53, cdc2, cyclin A, or cyclin B1 (diluted in blotto) for 1 hr at 25°C.
Normal mouse IgG served as a negative control. For the detection of
phosphotyrosine, the membranes were blocked as described by the man-
ufacturer of the anti-phosphotyrosine antibody with 10 mM Tris-HCl, pH
7.5, containing 0.5% (v/v) Tween-20 and 1% (w/v) BSA. Proteins and
phosphotyrosine were detected by chemiluminescence using goat anti-
mouse IgG conjugated to horseradish peroxidase and ECL HRP substrate.
Bands were quantitated densitometrically using Sigma Scan.

For immunoprecipitations, protein lysates were prepared as described
above. Protein (200mg) was added to the immunoprecipitation buffer (10
mM PBS, pH 7.5, containing 50mM phenylmethylsulfonylfluoride, 3
units/ml aprotinin, 1 mM sodium orthovanadate) and pretreated with nor-
mal mouse IgG (1mg/ml) and protein A/G conjugated agarose beads (20
ml) for 1 hr at 4°C. Following centrifugation, the pellets were suspended in
electrophoresis sample buffer (50 mM Tris-Cl, pH 6.5, 10% (v/v) glycerol,
5% (v/v) 2-mercaptoethanol, 1% (w/v) bromophenol blue) and boiled for
5 min. These samples were used as nonspecific controls. Anti-cyclin A or
B antibody (1mg/ml) and protein A/G conjugated agarose beads (20ml)
were added to the supernatants and the mixture was incubated with mixing
for 24 hr at 4°C. Following incubation, samples were centrifuged and the
pellets resuspended in electrophoresis sample buffer and processed as
described above. Proteins were separated by SDS-PAGE, transferred to
nitrocellulose membranes, and immunoprobed with the designated anti-
body as described above.

RESULTS

Effects of AA on Cell Cycle Progression During
Oxidative Stress

To determine whether AA was effecting cell cycle pro-
gression during periods of oxidative stress, asynchronously
growing AS52 cells were treated with AA for various times
prior to treatment with RGS and examined by flow cytom-

Fig. 1. Kinetic analysis of AA-induced cell cycle arrest. AS52 cells (106)
were treated with 50mM AA for the indicated times followed by treatment
with RGS, stained with propidium iodide and examined by flow cytometry
as described in Material and Methods.a: Untreated cells;b: RGS treat-

ment; c: AA treatment;d: AA 1 RGS, 0 time;e: AA treatment 10 min
prior to RGS;f: AA treatment 30 min prior to RGS;g: AA treatment 60
min prior to RGS;h: AA treatment 2 hr prior to RGS;i: AA treatment 4
hr prior to RGS;j : AA treatment 24 hr prior to RGS;k: nocodazole control.

TABLE I. Effect of AA and RGS on Cell Cycle Progression*

Treatment

Percentage of cells

G0/G1 S G2/M

Untreated 35.7 61.4 3.0
RGS 42.7 45.5 11.8
AA 33.8 61.0 6.0
AA 1 RGS (0 time) 26.7 32.0 41.3
AA (10 min) 1 RGS 12.5 25.1 62.4
AA (30 min) 1 RGS 5.5 31.7 62.8
AA (60 min) 1 RGS 5.4 36.4 58.3
AA (2 hr) 1 RGS 13.6 46.6 39.9
AA (4 hr) 1 RGS 24.2 51.1 24.6
AA (24 hr) 1 RGS 31.9 54.5 13.5
Nocodazole 8.3 27.0 69.7

*AS52 cells were treated with 50mM AA for the indicated times and then
with RGS, stained with propidium iodide, and examined by flow cytometry
as described in Materials and Methods. Controls cells were untreated,
treated with RGS for 20 min, or treated with 50mM AA for 2 hr.
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etry (Fig. 1; Table I). Treatment of cells with RGS resulted
in a slight increase in the percentage of cells in G0/G1 and
G2/M (Fig. 1b) when compared to untreated controls (Fig.
1a). Conversely, AA (50mM) had no effect on cell cycle
progression (Fig. 1c). Higher concentrations of AA (0.1 and
1 mM) had no effect on the progression of AS52 cells
through the cell cycle (data not shown). Treatment of cells

with AA prior to treatment with RGS or co-treatment of
cells with AA and RGS resulted in a significant increase in
the percentage of cells arrested at G2/M (Fig. 1d–j). Maxi-
mal G2/M arrest occurred in cells treated with AA 10–60
min (Fig. 1e–g) prior to treatment with RGS and minimal
arrest occurred in cells treated either 24 hr before (Fig. 1j)
or after treatment (data not shown) with RGS.

Fig. 2. Effect of AA and oxidative stress on cellular levels of p53, cdc2,
cyclin A, and cyclin B. Cells were treated and protein extracts were
analyzed by Western blotting as described in Material and Methods. Lane
1: untreated cells; Lane 2: RGS-treated cells; Lane 3: AA (50mM) treated
cells; Lane 4: AA- and RGS-treated cells, 0 time; Lane 5: cells treated with

AA 30 min prior to RGS treatment; Lane 6: cells treated with AA 60 min
prior to RGS treatment; Lane 7: cells treated with AA 2 hr prior to RGS
treatment; Lane 8: cells treated with AA 24 hr prior to RGS treatment.a:
p53; b: cdc2;c: cyclin A; d: cyclin B1.
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Effects of AA on Expression of p53 Cyclins A and B
and the Cyclin B-cdc2 Complex

To begin to elucidate the mechanism(s) by which AA
enhances arrest at the G2/M checkpoint during oxidative
stress, we determined whether AA induced any changes in
the levels of proteins involved in cell cycle progression or

checkpoint control during oxidative stress. There were no
changes in the levels of p53 or cdc2 in treated cells when
compared to the controls (Fig. 2a,b, respectively). We be-
lieve that the multiple bands seen in SDS-PAGE gels from
extracts of asynchronously growing cells (Fig. 2a,b) repre-
sent different phosphorylated forms of p53 and cdc2 that are

Fig. 3. Effect of AA and oxidative stress on cyclin B-cdc2. Protein
lysates were prepared as described in Material and Methods. Extracts (200
mg) were precleared using normal mouse IgG and protein A/G conjugated
agarose beads. Cyclin B-cdc2 complexes were immunoprecipitated as
described in Material and Methods using mouse monoclonal anti-cyclin B1
and protein A/G conjugated agarose beads. SDS-PAGE and immunoblot-
ting were performed as described in Material and Methods using mouse
monoclonal antibodies against cdc2 or phosphotyrosine. Proteins were
detected by chemiluminescence. Lanes: 1) untreated controls; 2) extracts

from RGS-treated cells; 3) extracts from AA-treated cells; 4) extracts from
cells co-treated with AA and RGS (0 time); 5) extracts from cells treated
with AA 30 min prior to treatment with RGS; 6) extracts from cells treated
with AA 1 hr prior to treatment with RGS; 7) extracts from cells treated
with AA 2 hr prior to treatment with RGS; and 8) extracts from cells
treated with AA 24 hr prior to treatment with RGS.A: Western blotting
with anti-cdc2 antibody; U: T14-Y15-T161 form of cdc2; L: T14-T161 and
Y15-T161 forms of cdc2.B: Western blotting with anti-phosphotyrosine
antibody; U: T14-Y15-T161 form of cdc2; L: Y15-T161 form of cdc2.

Fig. 4. Effect of DHA and BSO treatment on cell cycle progression. Cell
treatments and cell cycle analysis were performed as described in Materials
and Methods.a: Untreated cells;b: RGS treatment;c: DHA treatment;d:

DHA treatment 2 hr, then RGS;e: BSO treatment;f: BSO and RGS
treatment;g: BSO, DHA (2 hr) treatments, then RGS;h: nocodazole
control.
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recognized by the monoclonal antibodies used in these
studies. Conversely, there was an increase in both cyclin A
and cyclin B levels in cells treated with AA prior to treat-
ment with RGS (Fig. 2c,d). The maximum increase in cyclin
A and cyclin B (17-and 6-fold, respectively) occurred in
cells treated with AA for 60 min prior to treatment with
RGS. Immunoprecipitation of cyclin B-cdc2 complexes
with anti-cyclin B1 monoclonal antibody, demonstrated that
there was an accumulation of at least two electrophoreti-
cally distinct forms of cdc2 bound to cyclin B1 in cells
treated with AA and RGS (Fig. 3A). Immunoprobing with
anti-phosphotyrosine antibody demonstrated that the forms
of cdc2 complexed to cyclin B were phosphorylated on
tyrosine-15, indicating that the cyclin B-cdc2 complex was
catalytically inactive. Maximum accumulation of these ty-
rosine phosphorylated forms (T14-Y15-T161 form and Y15-
T161 form) of cyclin B-cdc2 occurred in cells treated with
AA 60 min prior to treatment with RGS and the levels of
these forms declined thereafter.

Effects of DHA and BSO on Cell Cycle Arrest

AA can be transported into cells by two distinct mecha-
nisms [Welch et al., 1993, 1995; Vera et al., 1993, 1995].
While AA can be transported into fibroblasts by a high
affinity sodium dependent co-transporter system, the major-
ity of AA is oxidized extracellularly to DHA and trans-
ported into the cell by glucose transporters. Once internal-
ized, DHA is rapidly reduced to AA by a glutathione
(GSH)-dependent mechanism. Our initial studies demon-
strated that DHA treatment of cells also induced transient
arrest at the G2/M DNA damage checkpoint during oxida-
tive stress (Fig. 4d), but under these conditions it was not
possible to determine whether arrest was induced by AA or
DHA. To determine whether AA or DHA was enhancing
cell cycle arrest, GSH was depleted in cells using BSO
[Griffith, 1982]. In the absence of oxidative stress, GSH
depletion had no effect of the progression of AS52 cells
through the cell cycle (Fig. 4e). However, during oxidative
stress there was an increased accumulation of glutathione-
depleted cells in S and G2/M (Fig. 4f) when compared to
untreated cells (Fig. 4a) and cells treated with RGS (Fig.
4b). Conversely, treatment of glutathione-treated cells with
DHA prior to treatment with RGS resulted in enhanced
accumulation of cells at G2/M when compared to controls
(Fig. 4g).

These results, summarized in Table II, suggest that the
enhanced cytotoxicity observed in cells co-treated with AA
and RGS was due to DHA or one of its degradative prod-
ucts. This was confirmed by determining the effect of GSH
depletion on the protective effect of AA. BSO treatment of
AS52 cells was not cytotoxic and there was only a slight
increase in cytotoxicity when BSO-treated cells were
treated with RGS (Table III). However, treatment of BSO-
treated cells with AA or DHA prior to RGS treatment

resulted in enhanced cytotoxicity of the cells during oxida-
tive stress.

DISCUSSION

The results of this study demonstrate that the protective
effect of AA during periods of oxidative stress is due to its
free-radical scavenging properties and also to its ability to
enhance cell cycle arrest at the G2/M DNA damage check-
point. Our data also demonstrate the complexity of the
checkpoint arrest mechanism — it involves the intracellular
accumulation of AA, AA’s stability, and at least two “sig-
nals”: DHA and DNA damage. We developed two models
to explain our data and these models are based on the
features that in AS52 cells AA is accumulated as DHA,
which is immediately reduced to AA, and that the half-life
of AA is approximately 20 hr, while the half-life of DHA is
approximately 0.5 hrs. In the absence of oxidative stress,
AA accumulates in cells and is metabolized. While DHA is
formed under these conditions, there is no cell cycle arrest,

TABLE II. Effect of BSO, DHA, and RGS on
Cell Cycle Progression*

Treatment

Percentage of cells

G0/G1 S G2/M

Untreated 35.7 61.4 3.0
RGS 42.7 45.5 11.8
DHA 36.0 56.3 7.7
DHA (2 hr) 1 RGS 14.9 32.7 52.4
BSO 24.6 69.5 5.9
BSO 1 RGS 28.9 50.6 20.5
BSO 1 DHA 1 RGS 11.9 59.0 29.1
Nocodazole 8.3 27.0 69.7

*AS52 cells were treated with BSO (0.01 M) for 24 hr prior to treatment
with DHA (50 mM, 2 hr) and RGS. Cells were stained with propidium
iodide and examined by flow cytometry as described in Materials and
Methods. Controls cells were untreated, treated with BSO for 24 hrs,
treated with RGS for 20 min, or treated with 50mM DHA for 2 hr.

TABLE III. Modulation of the Protective Effects of Ascorbic
Acid During Oxidative Stress by Buthionine Sulfoximine*

Treatment Survival (%)

None 100.06 15.2
RGS 66.76 8.2
AA 97.7 6 6.1
DHA 96.66 7.8
BSO 98.36 6.7
BSO and RGS 52.76 7.0
BSO, AA and RGS 5.26 2.7
BSO, DHA and RGS 4.46 1.6

aAS52 cells were treated with BSO (0.01 M), AA (50mM), DHA (50 mM),
and/or RGS as described in Figures 1 and 4. Cells were treated with either
AA or DHA 2 hr prior to treatment with RGS. Cytotoxicity was determined
as described in Materials and Methods. The cloning efficiency of untreated
cells ranges from 85–93%. Values represent the average6 the standard
deviation of a minimum of three experiments.
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since the DNA damage signal is absent. Conversely, in
AS52 cells treated with AA prior to treatment with RGS,
DHA is accumulated and rapidly reduced to AA. This
establishes a reduced environment in the cells. When these
cells are treated with RGS, H2O2 damages cellular macro-
molecules including DNA (DNA damage signal) and AA is
oxidized by H2O2, creating the DHA signal (Fig. 5). In this
model, cellular damage is reduced by the free-radical scav-
enging properties of AA (decreased cytotoxicity). DNA
damage is reduced by the free-radical scavenging properties
of AA and by the induction of cell cycle arrest. This allows
DNA repair to occur and results in decreased mutagenicity
[Bijur et al., 1997].

Conversely, in cells co-treated with AA and RGS, DHA
is accumulated, but because of the oxidative stress it is not
reduced or reduced to a limited degree to AA (Fig. 6).
Therefore, there are increased levels of H2O2 in these cells
when compared to cells treated with AA prior to treatment
with RGS. This was demonstrated by in situ histochemical-
image analysis [Bijur et al., 1997]. The H2O2 causes the
oxidation of cellular macromolecules and possibly DHA.
The oxidation/metabolism of DHA results in the formation
of additional metabolites that cause cellular damage. This is
suggested by our studies which demonstrate that treatment
of cells with BSO, AA/DHA, and RGS results in enhanced
cytotoxicity when compared to controls. Cell cycle arrest
also occurs in cells co-treated with AA or DHA and RGS,
because the DHA and DNA damage signals are present.
Then why is there enhanced mutagenesis in cells co-treated
with AA and RGS? DNA damage is occurring because of
the formation of H2O2 and while cell cycle arrest occurs, the
level of cell cycle arrest in this population is not as great
when compared to cell populations treated with AA prior to
treatment with RGS. Therefore, in this cell population there

is a higher probability that DNA damage is fixed in the
DNA. Thus, the enhanced mutation frequency observed in
cells co-treated with AA and RGS [Bijur et al., 1997]
reflects not only the increased DNA damage, but also the
increased cytotoxicity which occurs in cells co-treated with
AA and RGS.

These models are consistent with the data presented in
this study and our previous study concerning AA [Bijur et
al., 1997]. However, how does AA, or more precisely,
DHA, effect cell cycle progression? Activation of the cyclin

Fig. 5. Model depicting events occurring in AS52 cells treated with AA prior to treatment with RGS.

Fig. 6. Model depicting events occurring in AS52 cells co-treated with
AA prior to treatment with RGS.
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B-cdc2 complex requires the sequential dephosphorylation
of threonine-14 and tyrosine-15, the only tyrosine residue
phosphorylated on cdc2, by the dual-specificity phosphatase
cdc25C [Kumagai and Dunphy, 1991; Millar et al., 1991;
Hoffmann et al., 1992; Borgne and Meijer, 1996]. Our
results demonstrate that following treatment of AS52 cells
with AA and RGS, both forms of cdc2 complexed to cyclin
B were phosphorylated on tyrosine-15, indicating that the
cyclin B-cdc2 complex is inactive. These results suggest
that DHA is modulating, either directly or indirectly, the
activity of cdc25C.

There is increasing evidence suggesting that the redox
(oxidation/reduction) status regulates cellular functions. Re-
active oxygen species (ROS) such as superoxide anion and
the hydroxyl radical and reactive oxygen intermediates
(ROI), such as H202, are formed during normal cellular
metabolism and following the exposure of cells to certain
environmental agents. Overproduction of ROI/ROS can be
detrimental to a cell by causing membrane peroxidation,
protein oxidation, and DNA damage. Conversely, ROS/ROI
also act as mediators in certain signal transduction pathways
[Baas and Berk, 1995; Sandaresan et al., 1995; Guyton et
al., 1996; Irani et al., 1997] and they can regulate gene
transcription by activating various transcription factors
[Baeuerle and Henkel, 1994; Schenk et al., 1994; Anderson
et al., 1994; Galter et al., 1994; Stauble et al., 1994; Sen and
Packer, 1996; Flohe et al., 1997]. Our results provide evi-
dence that the redox status may be important in regulating
cell cycle progression during oxidative stress. While addi-
tional studies are necessary to define the mechanism by
which AA/DHA regulates cdc25C, our results demonstrate
a novel mechanism by which AA protects cells from dam-
age due to oxidative stress and a unique redox mechanism
involved in cell cycle progression.
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